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[1] We investigate the formation of three-dimensional sand patterns under a steady
laminar shear flow using a process-based stability approach. The hydrodynamics of the
problem is solved in the infinite depth case and in the long-wavelength approximation.
The sand transport is described using two different models. The first one is based on a
semiempirical law in terms of both the local bed shear stress and the local bed slope.
The second one accounts for an additional mechanism depending on grain inertia. A
three-dimensional linear stability analysis reveals that within both models, the most
unstable mode is a longitudinal mode, thus corresponding to a ripple pattern with crests
perpendicular to the flow direction. In the first model, the destabilizing effect of fluid
inertia is counterbalanced by the stabilizing mechanism due to gravity, whereas in the
second one, the effect of grain inertia on sand transport is found to be the pertinent
stabilizing process for sufficiently large particle Reynolds number. In addition, we find
that a range of oblique modes is unstable and can couple to longitudinal modes in the
nonlinear regime. A weakly nonlinear analysis indeed shows that the coupling between
two oblique modes and a longitudinal one gives birth to complex three-dimensional sand
ripples, which migrate in the flow direction at constant speed, preserving their shape. As a
direct consequence, the three-dimensionality of the phenomenon cannot be neglected.

Citation: Langlois, V., and A. Valance (2005), Three-dimensionality of sand ripples under steady laminar shear flow, J. Geophys.

Res., 110, F04S09, doi:10.1029/2004JF000278.

1. Introduction

[2] When subject to a fluid flow, erodible beds, that are
initially flat, often deform and give rise to regular patterns
resembling waves. Such bed forms can be observed in
different natural contexts, like in tidal seas or in rivers.
The understanding of the dynamics and morphology of
these bed forms has been the subject of intense research
activities, however a fuller description of the complex links
between the fluid flow, the bed morphology and the
sediment transport is still needed to be able to predict the
long-term behavior of such patterns.
[3] Here, we address the issue of the influence of the

three-dimensionality on the dynamics and morphology of
sand bed forms. Most of the studies concerned only two-
dimensional bed forms, that is, structures that are invariant
in the direction transverse to the flow. Yet, natural sand bed
forms appearing under unidirectional flows often exhibit
cross-stream variations and adopt complex three-dimensional
shapes, such as dunes with sinuous crests [Wilbers and
Brinke, 2003], crescent-shaped barchan dunes [Carling et
al., 2000], and alternate sandbars [Nelson, 1990]. The evolu-
tion of transverse ripples to sinuous or ‘‘linguoid’’ patterns
have also been experimentally observed by Raudkivi [1997].

Recently Maddux et al. [2003a, 2003b] studied experimen-
tally the flow over three-dimensional dunes and showed that
the nature of the flow is greatly influenced by the dune shape.
It seems therefore pertinent to investigate the physical mech-
anisms responsible for the evolution of a flat bed form toward
these different types of three-dimensional (3-D) patterns. In
this article, we focus on a simple configuration: a granular
sand bed is sheared by a steady and laminar shear flow andwe
restrict our analysis to the small-scale bed forms, that is, the
ripples. This configuration is, of course, far from natural
situations where the flow is usually turbulent, however
one expects to gain in the physical understanding of the
destabilization mechanisms of a 3-D bed form. Indeed it
can be considered as a canonical situation, and as it will
be discussed in the conclusion, some of the ‘‘laminar’’
results can be extrapolated to the case of a turbulent flow.
Besides, it is worth noting that ripples can be obtained
under a laminar flow in laboratory experiments [Kuru et
al., 1995].
[4] Before going further, let us recall the main theoretical

works related to the formation of current-related ripples.
Most studies focused on two-dimensional (2-D) configura-
tions. The first attempts to understand the origin of sand
ripple instability were based on potential flow models. It
was shown [McLean, 1990] that the instability only occurs
if an artificial lag between the flow and the bed profile is
introduced. Further studies considered explicitly the turbu-
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lence of the flow [Richards, 1980]. These turbulent flow
models are able to predict the ripple instability but the
predicted wavelength of the sand pattern depends greatly on
the way in which the turbulence is parameterized. More-
over, Charru et al. [2004] recently showed theoretically that
the turbulence is not necessary for ripple instability. In the
oscillatory case (that is, sea wave–related ripples), the linear
stability analysis was performed by Blondeaux [1990] and
the three-dimensionality of these ripples has been theoret-
ically investigated by Vittori and Blondeaux [1992] and
Roos and Blondeaux [2001] in the case of bidirectional or
elliptical oscillatory flows. In particular, they studied the
linear and nonlinear evolution of 3-D ripples. However, to
our knowledge no similar three-dimensional theoretical
analysis has been performed for current-related ripples.
[5] We present here such a theoretical study of the

formation of 3-D sand ripples under a steady flow. The
aim is to determine if the three-dimensionality of the system
plays a role even in the case of a steady, unidirectional flow.
[6] The fluid flow above the bed forms is calculated

analytically in 3-D. We propose two models for the descrip-
tion of the sediment transport. The first one is inspired from
those developed in two dimensions [Fredsoe and Deigaard,
1992] and is based on a semiempirical law depending both
on the local bed shear stress (which is calculated from
the resolution of the hydrodynamic equations) and on the
local bed slope. Within this model, we show that the
linear stability analysis fails to predict realistic behaviors
concerning the ripple wavelength. Therefore we introduce a
second model which takes into account an additional
mechanism depending on grain inertia and we compare
the results with available experimental data. Finally, we
investigate the nonlinear dynamics of the sand bed by
performing a weakly nonlinear analysis.
[7] The paper is organized as follows. Section 2 presents

the equations for the flow and the first model used for the
sediment transport. Section 3 is devoted to the presentation of
the linear stability analysis (within this basic model) and its
prediction concerning the growth rate of the unstable modes.
In section 4, we expose the second model for the sediment
transport including grain inertia and report on the consequent
outcomes concerning the linear stability of the sand bed.
Section 5 deals with the nonlinear dynamics of the sand
surface. Finally, the results are discussed in section 6.

2. Presentation of the Basic Model

[8] We introduce the axes x, y and z: x corresponds to the
direction of the flow, y is the horizontal axis transverse to
the flow and z is the vertical axis. We consider a Couette
configuration, that is, a laminar shear flow of thickness L
over a perturbed bed (this configuration can be considered
as an approximation of a laminar boundary layer). The
sketch of the studied system is presented in Figure 1. The
flow obeys the hydrodynamic equations

r
@u

@t
þ r u � rrrrrrrð Þu ¼ �rrrrrrrpþ hrrrrrrr2u

rrrrrrr � u ¼ 0;

8><
>: ð1Þ

u = (u, v, w) being the fluid velocity, p the pressure, r the
volumetric mass of the fluid, and h its dynamic viscosity

(n = h/r being the kinematic viscosity). These equations are
complemented with the following boundary conditions:

u ¼ 0 at the bed surface z ¼ h x; y; tð Þ
u ¼ gL ex at the height z ¼ L;

�
ð2Þ

where ex is the unit vector defining the x axis and g is the
shear rate imposed by the flow.
[9] The sediment transport is a complex process which

depends crucially on grain-grain and grain-fluid interac-
tions. To date, there is no sound theoretical description of
this process and the evaluation of the transport rate is based
on semiempirical laws. In theoretical or numerical works,
the horizontal flux of grains is usually assumed to be given
by a power law of the Shields number [Fredsoe and
Deigaard, 1992]:

q ¼ qb Q�Qc0 1þ @xh

ms

� �� 	m
� H Q�Qc0 1þ @xh

ms

� �� 	
; ð3Þ

where H is the Heaviside function, Q is the dimensionless
shear stress (or Shields parameter) at the sand surface, Qc0

is the critical Shields number corresponding to the onset of
grain motion on a horizontal flat bed, and ms is the internal
friction coefficient of the granular material. qb =
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 1ð Þgd3

p
is the reference grain flux, c being a

numerical constant, s = rg/r the relative density of the
grains compared to that of the fluid, g the gravitational
acceleration and d the diameter of the grains.
[10] The value of the exponent m varies according to the

authors. In the Meyer-Peter law, m = 3/2 [Fredsoe and
Deigaard, 1992], whereas Bagnold [1956] proposed a
sediment transport law with m = 3. The above law is only
applicable in the case of a two-dimensional configuration
(i.e., when the system is invariant in the direction y
perpendicular to the flow).
[11] Our purpose is to extend this transport law in the case

of a three-dimensional configuration, where the system, and
consequently the sand bed surface, is no longer invariant in
the direction perpendicular to the flow. Our calculation is
inspired from those of Fredsoe and Deigaard [1992] on the
sediment transport on a transverse slope and of Kovacs and
Parker [1994] who extended the Ashida-Michiue law for a
3-D sediment flow rate in a turbulent flow.
[12] We first introduce a dimensionless bed shear stress

vector defined by

0 ¼ Tb

rg s� 1ð Þd ; ð4Þ

with Tb the bed shear stress (i.e., the flow shear stress
calculated at the sand surface). The modulus of this
dimensionless vector is referred to as the Shields parameter.
Let us now enumerate the three forces acting on a single
grain resting on the bed (see Figure 2). The first one is the
immersed weight (i.e., the weight minus the buoyancy
force):

W ¼ � s� 1ð Þrgd3 ez: ð5Þ

We define n as the local unit vector normal to the sand
surface. The weight can be decomposed into a normal
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component, (W � n)n, and a tangential one, W � (W � n)n,
which tends to destabilize the grain.
[13] The second force is the drag force exerted by the

fluid, which is proportional to the bed shear stress:

Fd ¼ x s� 1ð Þrgd30: ð6Þ

The dimensionless constant x is introduced to account for
the local geometrical configuration of the bed around the
grain (its value will be specified below). Finally, the third
force is the frictional force experienced by the grain. Using
the Coulomb friction law, at the onset of grain motion, one
gets

Ff ¼ ms W � nð Þ uf ; ð7Þ

where uf is the unit vector corresponding to the grain
motion direction and is given by

uf ¼
Fd þW� W � nð Þn

k Fd þW� W � nð Þn k : ð8Þ

[14] At the onset of grain motion, all forces should
balance exactly, leading to

ms W � nð Þ ¼k Fd þW� W � nð Þn k : ð9Þ

At the dominant order, the above equation can be rewritten as

k x=ms0�rrrrrrrh=ms k ¼ 1: ð10Þ

In the particular case of a flat horizontal bed, equation (10)
leads to x= ms/Qc0 (we remind the reader thatQc0 is the critical
Shields number corresponding to the onset of grainmotion on
a flat horizontal bed). By analogy with the 2-D transport law,
we shall assume the modulus of the grain flux to be a power
law of the dimensionless quantity measuring the distance
from the onset of grain motion, that is,

k q k ¼ qb k 0�Qc0

ms
rrrrrrrh k � Qc0

� 	m
: ð11Þ

Finally, we have to estimate the horizontal direction of the
flux of grains. It is given by the horizontal projection of the
sum of the destabilizing forces (weight and drag force), which
yields at first order in h: x0h � rrrrrrrh (where 0h is the

horizontal projection of the dimensionless shear stress). The
horizontal flux of sand grains is therefore given by

q ¼ qb k 0�Qc0

ms
rrrrrrrh k � Qc0

� 	m 0h �
Qc0

ms
rrrrrrrh

k 0h �
Qc0

ms
rrrrrrrh k

: ð12Þ

For the further developments, the internal angle of stability
will be taken equal to 30� (or equivalently ms = 0.58) and the
exponent m equal to 3/2.
[15] The closure of the model is given by the conserva-

tion of mass of grains, assuming that the average packing
fraction of the bed C0 is constant:

C0

@h

@t
¼ �rrrrrrr � q: ð13Þ

3. Linear Stability Analysis

[16] In this section, we study the linear stability of the
basic state corresponding to the case of a flat horizontal
bed. This basic state is characterized by a linear velocity
profile u = (u0, v0, w0) = gzex and a transport rate given by

q0 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 1ð Þgd3

p
Q0 �Qc0ð Þmex: ð14Þ

Q0 = ng/(g(s � 1)d) is the dimensionless bed shear stress in
the case of a flat bed. The pressure profile is hydrostatic:

Figure 1. Sketch of the studied system.

Figure 2. Sketch of forces acting on a grain.
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p0(z) = �rgz + cst (the constant being an arbitrary reference
pressure).
[17] To investigate the stability of the planar sand bed, we

introduce a small perturbation of the sand bed, namely,

h x; y; tð Þ ¼ h1 e
i kxxþkyyð Þþwt þ c:c:; ð15Þ

where h1 is a small quantity, k = kx ex + ky ey is the wave
vector of the perturbation, and w its complex growth rate.
The aim of the linear stability analysis is to obtain the
dispersion relation, that is, the growth rate as a function of
the wave vector. It is first necessary to calculate the fluid
flow above the perturbed sand bed.

3.1. Solution of the Hydrodynamic Equations Over a
Perturbed Sand Bed

[18] We introduce the following notations for the per-
turbed flow quantities:

u; v;w; pð Þ ¼ u0; 0; 0; p0ð Þ

þ U1;V1;W1;P1ð Þ ei kxxþkyyð Þþwt þ c:c:
h i

: ð16Þ

We assume the quasi-stationarity of the hydrodynamic flow:
the timescale of the movement of the bed is much larger

than the timescale of the fluid motion. It means that the flow
adapts instantaneously to any change of the bed profile,
which allows one to calculate the flow as if the bed were
fixed. Keeping only the linear terms in equation (1), we get
the following coupled equations for U1, V1, W1 and P1:

i kx gzU1 þ gW1 þ ikx
P1

r
¼ n @z

2 � k2x � k2y

� �
U1 ð17Þ

i kx gzV1 þ iky
P1

r
¼ n @2

z � k2x � k2y

� �
V1 ð18Þ

i kx gzW1 þ
1

r
@zP1 ¼ n @2

z � k2x � k2y

� �
W1 ð19Þ

i kxU1 þ ikyV1 þ @zW1 ¼ 0: ð20Þ

In the linear approximation, the boundary conditions
become

z ¼ 0 : U1 ¼ �gh1; V1 ¼ 0; W1 ¼ 0

z ¼ L : U1 ¼ 0; V1 ¼ 0; W1 ¼ 0:
ð21Þ

[19] By combining equations (17)–(20), one can obtain a
closed equation for W1:

n @2
z � k2

� �
� i kx gz

� �
@2
z W1 � k2W1

� �
¼ 0; ð22Þ

the solution of which can be expressed in terms of the Airy
functions Ai and Bi [Abramovitz and Stegun, 1965]:

W1 zð Þ ¼ a1 e
kz þ b1 e

�kz þ ekz

2k

Z z

0

dze�kz a2Ai z0ð Þ þ b2Bi z0ð Þð Þ

� e�kz

2k

Z z

0

dzekz a2Ai z0ð Þ þ b2Bi z0ð Þð Þ; ð23Þ

where z0 = eip/6 (kxlv)
�2/3 (kxz � ik2ln

2), lv =
ffiffiffiffiffiffiffiffi
n=g

p
is a

‘‘viscous’’ length and k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
is the wave number of the

perturbation. a1, b1, a2 and b2 are integration constants to be
determined using the boundary conditions. U1 and V1 can be
also derived explicitly: the detailed calculation and
analytical expressions are given in Appendix A. Figure 3
plots the profiles U1(z) and W1(z) in the two-dimensional
case (ky = 0) and for a small wave number (kxln = 0.1). Note
that this 3-D flow calculation was presented for the first
time by Langlois and Valance [2005].

3.2. Dispersion Relation

[20] Let us first remind the reader that in the 2-D
configuration [Charru et al., 2004], the instability arises
from the phase lag between the shear stress and the bed
profile. Indeed, as a result of mass conservation, a bump
grows if the sand transport rate is greater on the stoss side
than on the lee side. A sinusoidal perturbation is therefore
expected to be amplified if the bed shear stress (which is in
phase with the sand transport) is shifted upstream with
respect to the bed profile.
[21] In the 2-D case, such a phase lag exists irrespective

of the value of the wavelength: therefore, without the

Figure 3. Perturbation velocity profiles for kxln = 0.1 and
ky = 0: (a) x component and (b) z component.
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presence of a stabilizing mechanism (such as gravity), all
perturbations grow. Our purpose is to analyze what happens
in the case of a three-dimensional flow.
[22] Once the velocity profile above the perturbed sand

bed has been determined, it is possible to calculate
the perturbed bed shear stress Tb1

(we recall that Tb =
Tb0

+ [Tb1
ei(kxx+kyy)+wt + c.c.]). In order to simplify the further

calculations, we shall focus on the particular situation where
the height of the flow L is much greater than the dimensions
of the bed perturbation. Within this approximation, one can
obtain analytical expressions of the shear stress in the long-
wavelength limit, that is, for kln � 1. One finds to the
dominant order:

tb1x
h1tb0

¼ l�2=3
n k1=3x

0:535k2x � 0:365k2y
k2x þ k2y

ffiffiffi
3

p
þ i

� �
þ O klnð Þ ð24Þ

tb1y
h1tb0

¼ �0:17 l�2=3
n

k4=3x ky

k2x þ k2y

ffiffiffi
3

p
þ i

� �
þ O klnð Þ; ð25Þ

where tb0 = hg. Higher-order contributions are given in
Appendix B. The aforementioned phase lag along x (resp. y)
between the bed shear stress and the bed profile corresponds
to the imaginary part of tb1x (resp. tb1y): since it is non zero
for each component, both of them are out of phase with the
bed profile.
[23] Linearizing the transport law (equation (12)), and

using mass conservation (equation (13)), we obtain the real
and imaginary parts of the complex growth rate of the bed
perturbation:

C0

qb
< wð Þ ¼ mmm�1Qm

c0

�
1þ mð Þ kx=

tb1x
h1tb0

� �
� k2x

ms

	

þ mmQm
c0

"
ky =

tb1y
h1tb0

� �
� Qc0 1þ mð Þ

k2y

ms

#
ð26Þ

C0

qb
= wð Þ ¼ �mmm�1Qm

c0
1þ mð Þ kx <

tb1x
h1tb0

� �

� mmQm
c0
ky <

tb1y
h1tb0

� �
: ð27Þ

[24] We have introduced the parameter m = (Q0 � Qc0
)/

Qc0
which measures the relative distance from the threshold

of grain motion, and will be referred to as the relative shear
stress excess.
[25] The complex parameter w contains two pieces of

information: the phase velocity of the perturbation given by
the imaginary part (i.e., by =(w)) and its growth rate given
by the real part (i.e., by <(w)). A negative growth rate
indicates that the bed is stable with respect to this pertur-
bation mode (its amplitude decays exponentially) whereas
an amplified mode corresponds to a positive growth rate.
3.2.1. Growth Rate: Selection of a Wavelength
[26] Equation (26) consists of two contributions involving

the grain flux in the x direction and the y direction, respec-
tively. Each of these contributions depends on the bed shear
stress and on the slope of the bed. Let us first analyze the terms
that depend on the slope: they are real, negative and propor-
tional to the squaredwave number (terms proportional to kx

2/ms
and ky

2/ms in equation (26). Therefore the effect of the gravity is
to damp the largest wave numbers, that is, the smallest
wavelengths (corresponding to the highest slopes): it tends
to smooth the sand surface. The other terms in equation (26)
depend on tb1. Referring to expressions (24)–(25), one can
note that for small k,tb1xplays a destabilizing rolewhereas tb1y
stabilizes the sand bed. The competition between these two
opposite mechanisms leads to the existence of a region of
amplified modes in the parameter space (kx, ky).
[27] This region can be seen on the stability diagram:

Figure 4 plots the marginal stability curve for different
values of m, that is, the curve where <(w) = 0. The curve
delimits an inner and outer region: the bed is unstable with
respect to modes contained in the inner region while it is
stable with respect to those of the outer region. The unstable
region expands as the shear stress excess m increases. One
can also note that for small k, pure longitudinal modes (i.e.,
ky = 0) are always amplified whereas pure transverse modes
(i.e., kx = 0) are damped. For larger k, the longitudinal
modes are stabilized by the gravitational effect, as found in
the 2-D analysis [see, e.g., Charru et al., 2004; Valance and
Langlois, 2005].
[28] The marginal curves shown in Figure 4 were plotted

for particular values of the friction coefficient ms (or
equivalently the internal angle of friction fs = arctan(ms))
and of the critical Shields number Qc0

. We chose fs = 30�
(corresponding to the maximal angle of stability of a pile) and
Qc0 = 0.2. Note that the experimental determination of these
parameters is rather controversial. For example, recent ex-
perimental observations tend to show that much greater
values of fs should be used (up to 60�) [Loiseleux et al.,
2004]. The spectrum of reported values for the critical Shields
number is quite large (from0.05 to 0.35) aswell. It is therefore
instructive to study the influence of these parameters on the
marginal stability curve. The results are shown in Figures 5
and 6. It turns out that the value of the critical Shields number
does not havemuch influence on the extension of the unstable
region.On the contrary, the unstable region is very sensitive to
a change of the internal angle of friction: it expands as fs

increases. Therefore it appears crucial that careful experi-
mental studies on the determination of the internal angle of
friction should be conducted.
[29] Besides the extension of the unstable region, it is

important to determine the fastest-growing mode, because it

Figure 4. Marginal stability curves for different values of
m. Qc0

= 0.2 and fs = 30�.
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is expected to give the order of magnitude of the ripple
wavelength in the first stages of the instability development.
Figure 7 plots the real and imaginary parts of the growth
rate versus kx for ky = 0 and versus ky for kx = kx

max. Despite
the presence of amplified oblique modes (i.e., ky 6¼ 0), the
fastest-growing mode is found to be longitudinal (i.e., ky = 0)
and therefore corresponds to ripples having crests per-
pendicular to the flow. This is the same result as that found
by Roos and Blondeaux [2001] with an oscillatory flow.
This finding seems to be rather consistent with the exper-
imental observations made for unidirectional flows in wide
channels: the ripples appearing at the first stages of the
instability have crests perpendicular to the flow, before
evolving to more complex patterns [Kuru et al., 1995].
The wavelength of the fastest-growing mode can be easily
calculated and one finds

lmax ¼
30 ln

m3=2s 1þ mð Þ3=2
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g s� 1ð Þd
p 30 n

Q1=2
c0

m3=2s 1þ mð Þ2
: ð28Þ

This result is the same as that found in the 2-D
configuration analysis [Charru et al., 2004; Valance and
Langlois, 2005]. Let us mention that the most amplified

wavelength depends both on the grain and flow properties.
Hence it appears that the selected wavelength decreases
when the diameter of the grains or the shear stress excess
increase. In Figure 8, we have plotted the evolution of the
fastest-growing wavelength varying the grain diameter and
the shear stress excess. In the case of a water flow (i.e., n =
10�6 m2/s), we obtain, for m = 1.1 and d = 110 mm, lmax =
0.9 mm, which is a rather small value compared to
experimental observations where the typical wavelength is
of order of a few centimeters, at the initiation of the
instability [Kuru et al., 1995; Loiseleux et al., 2004]. The
latter paper gives an initial wavelength of 4 cm with m = 1.1
and d = 110 mm. Moreover, the observations tend to show
that the wavelength increases with the excess shear stress,
contrary to the theoretical prediction. It is therefore
necessary to improve the description of the sand transport.
We propose in the next section an improvement of the sand
transport modeling by taking into account the grain inertia.
3.2.2. Migration Speed
[30] The imaginary part of w contains information about

the migration of the ripples. In Figure 9 we plotted the sign
of =(w) for m = 1. As can be seen in equation (15), the ripple

Figure 5. Marginal stability curves for different values of
Qc0

: Dotted curve is Qc0
= 0.05, solid curve is Qc0

= 0.2, and
dashed curve is Qc0

= 1. Here m = 1 and fs = 30�.

Figure 6. Marginal stability curves for different values of
fs. Here m = 1 and Qc0

= 0.2.
Figure 7. Growth rate for m = 1 (w0 = qb/ln

2) versus (a) kx
for ky = 0 and (b) ky for kx = kx

max.
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migrates downstream if =(w) < 0 and upstream if =(w) > 0.
One can note on the diagram that all amplified modes
migrate downstream whereas ripples roughly parallel to
the main flow migrate upstream.
[31] Moreover, the imaginary part of the growth rate is

plotted on Figure 7 versus kx for ky = 0 and versus ky for kx =
kx
max. In the case ky = 0; that is, for longitudinal modes, the
migration speed reads to dominant order:

Vd ¼ �= wð Þ
kx

¼ 0:93
qb

C0

mmm�1 1þ mð Þl�2=3
n Qm

c0
k1=3x : ð29Þ

[32] This velocity grows with the wave number of the
perturbation: the larger the ripples, the more slowly they
migrate.

4. Sand Transport Model Including Grain Inertia

[33] The predictions of the above calculation seem to fail
for typical experimental parameters. It turns out that the
grain inertia, neglected in the former analysis, is not
negligible. Indeed, the particle Reynolds number (Rep =

gd2/n) at the onset of grain motion becomes greater than
unity when the grain diameter exceeds 50 mm. It is therefore
likely that the grain inertia plays a role in the sediment
transport process. In particular, one can expect that because
of inertia, the grain flux does not adapt instantaneously to
the local bed shear stress. We therefore propose a new
model taking into account this process.
[34] As suggested above, in a nonequilibrium situation,

the grain flux does not instantaneously reach its equilibrium
value qeq. Indeed, if the fluid velocity increases, new grains
from the bed are set into motion and it takes some time for
them to reach the flow velocity. This characteristic equilib-
rium time can be associated with an equilibrium length leq
(which corresponds to the distance necessary for the grains,
initially at rest, to equilibrate their velocity with that of the
fluid). Furthermore, one expects that this relaxation process
is of significative importance only in the main direction of
the flow. As a consequence, we propose the following
relaxation law for the grain flux:

@qx
@x

¼ � qx � qeqx
leq

ð30Þ

qy ¼ qeqy ; ð31Þ

where leq is the characteristic length needed for the grain
flux in the flow direction, qx, to reach its equilibrium value
qx
eq. The equilibrium transport rate qeq is taken to be equal to
that established in section 2. The estimation of the length leq
is quite complex because of the intricate interactions
between the fluid and the grains. However, we can get a
crude approximation assuming that the moving grains roll
on the sand bed surface and that their equilibrium velocity is
given, to zero order, by gd/2 [Valance and Langlois, 2005].
Within these approximations, we obtain

leq ¼ f Rep
� �

s d;

where f is a function of the particle Reynolds number Rep
which is constant for high values of Rep and scales as Rep
for lower ones [Valance and Langlois, 2005]. Figure 10
gives the value of Rep at the grain motion threshold as a
function of the grain diameter, while the evolution of this
equilibrium length with Rep is plotted in Figure 11. It is

Figure 8. Evolution of the fastest-growing wavelength
with the shear stress excess m for different values of the
grain diameter (in the gravitational regime).

Figure 9. Sign of the imaginary part of the growth rate for
m = 1. Gray region is the upstream migration, and white
region is the downstream migration. The dotted curve is the
marginal stability curve.

Figure 10. Particle Reynolds number calculated at the
onset of grain motion as a function of d.
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worth noting that this equilibrium length is analogous to the
‘‘saturation length’’ of the flux introduced in the context of
aeolian sand transport [Sauermann et al., 2001; Andreotti et
al., 2002].
[35] Within the framework of this new model for the sand

transport, we can again perform a linear stability analysis of
the planar sand bed. We now obtain for the dispersion
relation the following result:

C0

qb
w ¼ � ikx mmm�1Qm

c0
1þ mð Þ tb1x

tb0
� ikx

ms

� �
1� ikxleq

1þ k2x l
2
eq

 !

� ikymmQm
c0

tb1y
tb0

�Qc0 1þ mð Þ iky
ms

� �
: ð32Þ

[36] The grain inertia adds the factor
1�ikxleq
1þk2x l

2
eq

� �
to the ‘‘x

component’’ of the growth rate previously obtained
(equation (26)). This term introduces a new stabilizing
mechanism, in addition to the gravitational one. This mech-
anism is expected to be relevant and to prevail over gravity for

large enough particle Reynolds number. Figures 12 and 13
compare the unstable regions obtained by taking into
account separately gravity or grain inertia, and combining
both effects. In the first case (Figure 12), the particle
Reynolds number has been taken to be small. In this
situation, adding the inertial effect does not affect the
unstable region much: the gravity is the predominant
stabilizing mechanism. In this gravity regime, the fastest-
growing mode is given by equation (28). In the second case
(Figure 13), we chose parameters such that the particle
Reynolds number is much larger. Here, adding the effect of
gravity to the inertial one does not affect the shape of the
unstable region. Grain inertia is therefore the pertinent
stabilizing mechanism at large particle Reynolds number.
In this regime, the fastest-growing mode is still a longitu-
dinal mode but has a different length scale. It is given by

lmax ’ 19 leq: ð33Þ

As can be seen in Figure 14, the wavelength of the fastest-
growing mode increases when the shear stress excess m and
the grain diameter increase, which is contrary to what we
obtained in the gravity regime and more compatible with the
experimental observations. In the case of a water flow (i.e.,
n = 10�6 m2/s), for d = 200 mm, s = 2.7, and m = 1, the
wavelength is found to be lmax = 1 cm. This prediction
gives a better agreement, although it is still quite small, with
the typical experimental values. However, one cannot
expect the prediction to be very accurate since it is based
on a rough estimation of the equilibrium length.

5. Weakly Nonlinear Analysis

[37] An important result from the 3-D linear stability
analysis is the existence of amplified oblique modes. Since
they are not growing as fast as the longitudinal ones, they
are not expected to play a role in the linear regime, but they
could couple to longitudinal modes in the nonlinear regime.
If such coupling exists, one may wonder what the long-term
dynamics and the obtained patterns will be.

Figure 11. Equilibrium length as a function of the particle
Reynolds number. For small values of Rep (Rep < 10), leq �
Repd (dotted curve), and for large values (Rep > 104), leq
tends to be independent of Rep.

Figure 12. Marginal stability curves, taking into account
the effects of gravity only (dotted curve) and of both gravity
and grain inertia (solid curve). Here s = 2.7, d = 50 mm, and
m = 0.1 (Rep = 2.3).

Figure 13. Marginal stability curves, taking into account
the effects of inertia only (dotted curve) and of both gravity
and grain inertia (solid curve). Here s = 2.7, d = 200 mm,
and m = 1 (Rep = 267).
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[38] We present here a weakly nonlinear analysis, already
introduced by Langlois and Valance [2005]. We will restrict
our analysis to a rather simple configuration, by focusing on
the nonlinear interaction between three modes: one longi-
tudinal mode and two oblique modes. The coupling be-
tween these modes is resonant if the sum of the latter two
wave vectors equals the former. This is the very same
configuration as that previously investigated under oscilla-
tory flow by Vittori and Blondeaux [1992] and Roos and
Blondeaux [2001]. Furthermore, we will choose two sym-
metrical oblique modes. We introduce the following nota-
tions for the wave vectors of three modes:

k1 ¼ kxex ð34Þ

k2 ¼
kx

2
ex þ kyey ð35Þ

k3 ¼
kx

2
ex � kyey: ð36Þ

Their complex amplitudes are respectively A1, A2, and A3.
[39] We thus consider the following structure for the sand

bed surface perturbation:

h1 x; y; tð Þ ¼ A1 tð Þ eik1�r þ A2 tð Þ eik2�r
�

þ A3 tð Þ eik3�r
�
þ c:c:; ð37Þ

with r = xex + yey designing the horizontal position. In order
to investigate the temporal evolution of this perturbation, we
perform a weakly nonlinear analysis. Following Vittori and
Blondeaux [1992], we restrict our study to the nonlinearities
induced by the transport law (12), neglecting those created
by the fluid flow. Indeed, if we consider modes close
enough to the marginal stability curve, the nonlinear
hydrodynamical terms will appear at higher order. Hence
the flow is calculated using the linear approximation while
the sediment transport is estimated taking into account the
nonlinearities. Furthermore, the grain inertia effect will be
neglected in this nonlinear analysis. Finally, the long-wave
limit (kln � 1) and the infinite depth approximation are still
adopted.

[40] Inserting equation (37) into equations (12) and (13),
we get three coupled nonlinear equations for the amplitudes
A1, A2 and A3:

dA1

dt
¼ w1A1 þ K1 A2A3 ð38Þ

dA2

dt
¼ w2A2 þ K2 A1A3

* ð39Þ

dA3

dt
¼ w3A3 þ K3 A1A2

*; ð40Þ

where * denotes the complex conjugation. The coupling
coefficients K1, K2 and K3 can be calculated analytically as
a function of the bed shear stress calculated at the first order
(see detailed expressions in Appendix C). Because of the
symmetry, t2 = t3 and w2 = w3 such that equations for A2

and A3 are identical. For simplicity, we restrict our analysis
to the situation where A2 = A3.
[41] Introducing the real-valued amplitude ai and the

phase fi of the complex amplitude Ai (i.e., Ai = aie
ifi), we

can rewrite equations (38)–(40) as

da1

dt
¼ < w1ð Þ a1 þ k1 Dfð Þa22; ð41Þ

da2

dt
¼ < w2ð Þ a2 þ k2 Dfð Þa1a2; ð42Þ

d Dfð Þ
dt

¼ = 2w2 � w1ð Þ � k3 a1; a2ð Þ sin Dfð Þ

þ k4 a1; a2ð Þ cos Dfð Þ; ð43Þ

where Df = 2f2 � f1. The expressions of the coefficients
k1, k2, k3 and k4 can be found in Appendix C. Let us
analyze the dynamics of the bed surface described by such
equations. When the amplitudes a1 and a2 are small enough,
the nonlinear terms are not pertinent so that the two modes
grow or decay, according to their growth rate <(wi). In the
case of unstable modes, they will grow exponentially until
the nonlinear terms become large enough and enter the
dynamics. The nonlinearities can either enhance or saturate
the exponential growth depending on the sign of the
coupling coefficients k1 and k2, which depends in a
complicated way on the wave number of both modes and
on their relative phase Df. If both modes are linearly
unstable, as soon as k1 or k2 is positive, a1 or a2 will have
an explosive growth (i.e., faster than an exponential one)
and the nonlinear analysis will break down. However, if
both k1 and k2 are negative, the nonlinear term can exactly
balance the unstable linear term leading to steady three-
dimensional sand ripples.
[42] These steady patterns correspond to the stationary

solutions of equations (41)–(43), that is,

da1

dt
¼ da2

dt
¼ d Dfð Þ

dt
¼ 0:

Figure 14. Evolution of the fastest-growing wavelength
with the shear stress excess m for different values of the
grain diameter (in the inertial regime).
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In fact, these patterns migrate along the flow direction at a
constant speed given by

vd ¼
2

kx

df2

dt
¼ 1

kx

df1

dt
:

We have determined the domain of existence of these
solutions in the parameter space (m, k) and have found that
there always exist such stationary solutions as soon as the
modes k1 and k2 lie in the linearly unstable region (i.e.,
<(wi) > 0). We have presented, in Figure 15, the amplitude
a1, a2 and the phase shift Df corresponding to the stationary
solution, as a function of ky for given values of kx and m.
One should point out that ky varies from 0 to the critical
value ky

c defined by <(w(kyc)) = 0. Above this critical value,
the mode k2 becomes linearly stable. The patterns

corresponding to these steady solutions can exhibit a large
variety of shapes. The pattern morphology depends
crucially on the ratio a1/a2 and on the phase shift Df.
Figure 16 gives some examples of ripple patterns obtained
for different typical values of a1/a2 and Df. These patterns
are similar to those obtained under an oscillatory flow by
Vittori and Blondeaux [1992].
[43] It is worth noting that in the framework of our model,

steady three-dimensional patterns that migrate in the flow
direction (without growing or decaying) can exist. Although
the analysis was restricted to the interaction of a triad of
modes, this result suggests that 3-D patterns can arise from a
flat bed in this hydrodynamic setting. It would be useful to
conduct a full nonlinear analysis in order to determine
whether such 3-D patterns can be stable.

6. Conclusion

[44] In this paper we presented a linear and nonlinear
analysis of the problem of sand ripple formation in the case
of a laminar shear flow. We treated the full three-dimen-
sional configuration (3-D flow over 3-D sand pattern) and
introduced a new description for the sediment transport
taking into account the grain inertia. The linear stability
analysis reveals that although the fastest-growing mode is
longitudinal, a range of oblique modes can be amplified.
Furthermore, we identify two distinct regimes where the
most amplified wavelength exhibits different scalings: in the
gravitational regime, the wavelength decreases for increas-
ing grain diameter and increasing shear stress excess,
whereas in the inertial regime, the wavelength grows with
the grain diameter and the shear stress excess. When
compared to available experimental data, the first model
appears to fail to predict a reasonable behavior, whereas the
second model shows a better agreement with experiments.

Figure 15. Amplitudes a1 and a2 and phase shift Df
corresponding to steady state solutions as a function ky for a
given value of kx. Parameters are kxlv = 0.1 and m = 1.

Figure 16. Examples of bed forms: (left) Df = p/2, kx/ky = 4, and a1 = a2 (brick pattern) and
(right) Df = 2p/3, kx/ky = 2, and a1 = a2/2 (hexagonal pattern).
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[45] We also performed a weakly nonlinear analysis
considering the interaction of a triad of unstable modes.
We studied in particular the resonant coupling between one
longitudinal mode and two symmetrical modes and show
that it can give birth to steady three-dimensional sand
ripples that migrate in the flow direction. We obtain a large
variety of 3-D ripples, ranging from brick patterns to
hexagonal ones [Roos and Blondeaux, 2001].
[46] The situation we analyzed is very simplified and

cannot be directly applied to natural situations where the
flow is often turbulent. Nevertheless our study proves that it
is not necessary to invoke the turbulence to explain the
emergence of three-dimensional patterns. Moreover, this
configuration allows us to have direct insights in the
complex coupling between the fluid flow, the bed form
morphology and the sand transport. A similar mechanism of
nonlinear coupling between resonant modes is expected to
occur even in a turbulent fluid flow. For instance, it is
possible to perform the same type of calculation using the
velocity field calculated by Hunt et al. [1988] in the
turbulent case. A linear analysis shows that the ‘‘turbulent’’
marginal stability curve in the (kx, ky) space has the same
shape as that shown on Figure 4. Assuming that the
pertinent nonlinearities come from the sand transport and
not from the fluid motion, a nonlinear analysis should lead
to the same conclusion as in the laminar case, that is, 3-D
patterns can emerge because of a resonant coupling between
a triad of unstable modes. Of course, one can expect the
turbulent fluctuations to play an important role when they
become as large as the mean value of the velocity field. The
presence of recirculation regions in the flow would also
invalidate the analysis on the basis of a matching asymptotic
expansion. In this cases, the specific effects of the turbu-
lence should be studied independently.
[47] Nevertheless, even in the laminar case, additional

efforts are needed to predict the long-term evolution of
three-dimensional sand ripple patterns. In particular, it
would be necessary to perform a full nonlinear analysis to
determine which three-dimensional patterns are stable and
which parameters control their final shape. Furthermore,
these theoretical predictions could be in principle tested in
water flume experiments. Finally, the possible emergence
of complex three-dimensional bed forms under a simple
laminar and steady shear flow shows that the three-
dimensionality must be taken into account even in natural
flows over erodible beds.

Appendix A: Derivation of the Velocity Field

[48] In this appendix, we present the derivation of the
components U1 and V1 of the perturbed flow. Combining
equations (17) and (18), we get

n @2
z � k2

� �
� i kx gz

� �
f1 ¼ gkyW1; ðA1Þ

where f1 = kyU1 � kxV1. The solution for f1 can be again
expressed in terms of the Airy functions and of W1:

f1 zð Þ ¼ a3Ai z
0ð Þ þ b3Bi z

0ð Þ þ pl�2=3
v e�ip=6 ky

k
1=3
x

� Bi z0ð Þ
Z z

0

W1 zð ÞAi z0ð Þdz
�

� Ai z0ð Þ
Z z

0

W1 zð ÞBi z0ð Þdz
	
;

ðA2Þ

with z0 = eip/6 (kxlv)
�2/3 (kxz � ik2ln

2). a3 and b3 are
integration constants. Finally, the use of the incompressi-
bility equation (20) allows the derivation of explicit
expressions for U1 and V1:

U1 zð Þ ¼ 1

ik2
ikyf1 zð Þ � kx@zW1 zð Þ
� �

ðA3Þ

V1 zð Þ ¼ 1

ik2
ikxf1 zð Þ � ky@zW1 zð Þ
� �

: ðA4Þ

Appendix B: Expressions of the Shear Stress in
the Long Wavelength Limit

[49] We give here the asymptotic development of the per-
turbed bed shear stress in the long-wavelength limit (kln� 1).

tb1x
h1tb0

¼ eip=6 l�2=3
n k1=3x

1:07k2x � 0:73k2y
k2x þ k2y

þ 0:83
k2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q
þ e�ip=6 l2=3n k�1=3

x 0:43k2x � 0:53k2y

� �
þ O klnð Þ7=3

� �
ðB1Þ

tb1y
h1tb0

¼ �0:34 eip=6 l�2=3
n

k4=3x ky

k2x þ k2y
� 0:83

kx kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
þ 0:96 e�ip=6 l2=3n k2=3x ky þ O klnð Þ7=3

� �
; ðB2Þ

where tb0 = hg.

Appendix C: Coefficients of the Nonlinear
Analysis

[50] The nonlinear coefficients of equations (38), (39),
and (40) can be expressed as functions of the perturbed bed
shear stress and read:

K1 ¼ � 3i

4
kxQ3=2

c0
m�1=2 1þ mð Þ2 t2t3

s20

�
� ikx

1þ mð Þ
ms

t2
s0

� k2x
4m2s

	
;

ðC1Þ
K2;3 ¼ � 3i

8
kxQ3=2

c0
m�1=2

�
�
1þ mð Þ2 t1t3;2*

s20
þ k2x

2m2s
� i 1þ mð Þ kx

ms

t3;2*
s0

� t1
2s0

� �	
:

ðC2Þ

[51] We have introduced the notations wi = w(ki) and ti =
tb1x(ki)/tb0 (w(ki) and tb1x(ki) are given by equations (26),
(27), and (24), respectively).
[52] The real coupling coefficients introduced in equa-

tions (41), (42), and (43) can be expressed as functions of
K1, K2, K3:

k1 ¼ < K1ð Þ cos Dfð Þ � = K1ð Þ sin Dfð Þ ðC3Þ

k2 ¼ < K1ð Þ sin Dfð Þ þ = K1ð Þ cos Dfð Þ ðC4Þ

k3 ¼ �2< K2ð Þa1 � < K1ð Þ a
2
2

a1
ðC5Þ

k4 ¼ 2= K2ð Þa1 � = K1ð Þ a
2
2

a1
; ðC6Þ

with Df = 2f2 � f1.
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